

Children learn key concepts such as grouping, comparing, same, fair and sharing as pre-requisites to conceptually understanding division.	Grouping/ Sharing Children explore sharing a group of objects between two and more people. This is a daily occurrence during play with toys and objects. Children also share during snack time, for example sharing fruit, allowing three breadsticks each etc. They are taught systematic ways of doing this as part of nursery routines.	Grouping/ Sharing Children move images to share such as cards during a board game. Some children explore graphics - showing how a set has been shared.	Grouping/ Sharing Adults model using everyday language of sharing groups. Children begin to use this language.
Year R - Multiplication			
Early Learning Goals: - Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally. - Have a deep understanding of number to 10, including the	Concrete Building tables Children will first count in units of one. This is practised on a daily basis to ensure children can consistently do it forwards and backwards to 10 and later 20. Staircase arrangements are used to support this. Towards the end of the year children will begin to explore the concept of unitising through skip counting in 2 s initially up to 6 . Use practical equipment to support their	Pictoral Building tables Children will be shown how the objects relate to numerals. For example, there are two socks and two more socks relating to the numerals 2 and 4. They will look at number tracks to support them in this area. They will use ten frames which are set out in columns of two.	Abstract Building tables Adults model talking about models and pictorial representations to see patterns and make links. Adults model stem sentences. There are \qquad grapes in each bunch. There are \qquad bunches The are \qquad grapes altogether.

composition of each number; this could be that a number is made up of groups of two etc.

- Subitise quantities; This could be seeing groups of numbers within numbers.
understanding so that they can begin to count forwards and back in 2 s . Models that come in pairs such as shoes and gloves or pairs of children. Counting sticks and moveable tracks in which carpeted number can be moved and objects placed on top Songs and rhymes are good ways to reinforce counting in 2 s .

Grouping

Children start by using a variety of objects to help their understanding of equal groupings. Children explore the concepts of same/ different in relation to objects and the groups of objects.
They understand how to recognise whether they are equal.

They describe how many are altogether by counting all of the objects.

Children explore already created arrays. The re able to place moveable objects into model arrays.

Children begin to record their ideas of quantities units through graphics. This can be pictures of the objects representing units.

They will write numbers to represent number tracks with units of 1 and may begin to record units of 2 .

Grouping

Children compare images of objects. They recognise which are the same and which are different.

They draw and recognise equal groups.
They describe how they know when a group is equal using the language of amounts.

Grouping

Adults model and then children describe equal groups use number words and words such as, "same, different, more, less, fewer."

They create stem sentences to describe their groups.
There are \qquad altogether.
There are \qquad groups in total
There are \qquad in each group

Arrays

As above then children progress to copying/ imitating the arrays they have encountered.

Create arrays through use of counters/ concrete equipment. Children use practical resources.

Doubles

Children use concrete objects to show doubles - double $3=6$. Use objects in pairs to demonstrate doubles.

Songs and rhymes such as, "Double, double dumpling" support understanding

Arrays

Children begin to use graphics to show arrays.

They draw pictorially onto images of numicon/ arrays. They notice groups within a quantity.

Doubles

Use pictorial representations to show doubles.

Activities such as playing board games using dice support this.

Arrays

Describe arrays through seeing patterns.
"I can see two, two and two."

Doubles

Recalling knowledge of doubles

given the opportunity to see when a number of objects cannot be shared equally.						
Year 1 - Multiplication	Concrete	Pictorial	Abstract			

National Curriculum

objectives

- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects,
pictorial representations, and arrays with the support of the teacher.
- Non-statutory Through grouping and sharing small quantities, pupils begin to understand multiplication and division; doubling numbers and quantities; and finding simple fractions of

Building tables

Children will begin to explore the concept of unitising through skip counting in 2 s up to 20 , moving up to 50 once they are confident. Use practical equipment to support their understanding, ensure that they count forwards and back in 2s. The counting stick, songs and rhymes are good ways to reinforce counting in 2 s .

Move into counting in 10s, forwards and backwards so children become more fluent Children could use hands to represent naturally counting in 10 .

Building tables

Use of counting stick to write steps of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s.

Children will find the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
100 squares, number lines and the
Gattegno chart may be useful to support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Children will establish patterns.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Children will create links with $2 s$ and even numbers. Children to count forwards and backwards.

When counting in 2 s children will develop the understanding of how this may be used in real life contexts, such as counting in pairs. Helping them see when it is more efficient than counting on ones. How many wheels are there? Count in groups of two.

Building tables

Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Use stem sentences alongside pictorial representations to see patterns and make links -

There are \qquad grapes in each bunch.
\qquad
The are \qquad grapes altogether.
objects,
numbers and quantities.

- They make connections between arrays, number patterns, and counting in twos, fives and tens.

Finally, move into counting in 5 s , children could use fingers to represent natural way to count in 5 s .

Use of counting stick to help with counting in twos (to 24), fives (to 50) and tens (to 100).

Children will find the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s using concrete apparatus.

There are 5 pens in each pack ...
5... 10...15...20... 25 ..

	Arrays Create arrays through use of counters/ concrete equipment. Children use practical resources (peg boards and counters are useful) to make equal groups in columns or rows.	Arrays Draw arrays and show pictorial representations to support their understanding. They develop links between arrays and equal groups. There are 3 counters in each row. There are 5 rows. $3+3+3+3+3=15$	Arrays Describe arrays through seeing patterns. They can write stem sentences linked to columns or rows. There are 3 rows of 5 counters $5+5+5=15$ in total. There are 5 columns of 3 counters $3+3+3=15$ in total
	Doubles Use concrete objects to show doubles double $3=6$. Use objects in pairs to demonstrate doubles.	Doubles Use pictorial representations to show doubles.	Doubles Solve problems involving doubles. You have five pairs of socks, how many socks do you have in total?

Year 1 - Division			
National Curriculum objectives	Concrete	Pictorial	Abstract
Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.	Grouping Children explore creating equal groups from a whole. They practically sort a whole set of objects into equal groups. Children could sort counters into sharing hoops or use multilink to create arrays. They understand that equal means each group has the same amount and begin to see that sometimes a whole cannot be shared amongst equal groups.	Grouping Children use pictorial representation to explore creating equal groups. There are 4 altogether. There are 2 equal groups of 2 .	Grouping Children write sentences and solve problems using words. I have 20 cubes. How many equal groups of 5 can I make? How many equal groups of 2 an I make?
	Sharing Children explore sharing a set of objects (e.g. multilink) into equal parts as a model of division. They work out, using practical equipment how many are in each part. Children need to be given the opportunity to see when a number of objects cannot be shared equally.	Sharing Use pictorial representations to represent sharing into equal parts. I have 12 sweets to share with 3 people. If I share equally, each person will get 4 sweets.	Sharing Children will problem solve with sharing using stem sentences to describe sharing. There are \qquad altogether. They are shared equally between \qquad groups. There are \qquad in each group. They will also explain how the know when a situation occurs where they can't share equally.

order
(commutative) and division of one number by another cannot

- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.
drawn circles or paper plates to physically move the objects into the groups.

Before grouping - there are some pencils There are twelve pencils in total.

After grouping -
The pencils have been grouped.
There are three groups of 4 .
$4+4+4=12$

Introduce children to the x symbol and help them to create links between repeated addition and multiplication.
to enclose each group, referring to the previous separate objects now as one 'thing/group'.

Before grouping - there are some footballs. There are 6 footballs in total.

The footballs have been grouped. There are

$$
\text { three groups of } 2
$$

$$
2+2+2=6 \text { in total. }
$$

Ensure the children are exposed to pictorial representations with unequal amounts. The children should recognise that one group has a different amount. Help children to use visual representations to compare equal and unequal

$5+5+5=15$
$3 \times 5=15$
I know that $5+5+5=15$
So I know that 3 groups of 5 or 3
$x 5=15$

Arrays and commutativity

Use arrays to help support the understanding of multiplication, creating links between repeated addition, arrays and multiplication

I have 4 groups of 6
$6+6+6+6=24$
$4 \times 6=24$

Use arrays with concrete materials to visualise commutativity linked to relevant times tables.

I can see 6 groups of 4 .
I can see 4 groups of 6 .
$4 \times 6=24$
$6 \times 4=24$
$6+6+6+6=24$
$4+4+4+4+4+4=24$

Arrays and commutativity

Children draw arrays to help support the understanding of multiplication. They link it to their learning on grouping.

4 groups of 5 ... 5 groups of 5

Use arrays to visualise commutativity. Rotate the array to show that orientation does not change the multiplication.

$3 \times 5=15$ $5 \times 3=15$

This is 3 groups of 5 and also 5 groups of 3 .

Arrays and commutativity

Children understand the relationship between arrays, multiplication and repeated addition. Create equations to describe arrays
$3 \times 5=15$
$3+3+3+3+3=15$
3 groups of $5=15$ altogether

They describe commutativity through words, showing understanding of links with multiplication and repeated addition.

I know that $3 \times 5=15$
So, I know that $5 \times 3=15$.
So, I know $5+5+5=15$
I also know $3+3+3+3+3=15$

National Curriculum objectives

- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number

Building tables

Recall 10,5, 2 and learn 4, 3- and 8-times table through use of counting stick and practical activities. They build on their knowledge of groups to learn and embed their times tables.

Links are created to the 6 -, 8 - and 12 -times table through repeated doubling.

Children will create arrays using counters and other concrete apparatus. Exploring links between doubles and times tables and looking for patterns. Ensuring that children understand that multiplication is commutative.
$4 \times 3=12$ or $3 \times 4=12$

Known related facts

Using place value equipment explore the relationship between known times-tables and multiples of 10. Ensure that children understand how unitising can support us.

Building tables

Recall through pictorial representations times tables.

How many wheels are there altogether?

Children count in groups of 4 .
Use the mathematical language of product and factors when describing the equation: -
What is the product of 4 and 5
4 is a factor
5 is a factor
20 is the product of four and five.

Known related facts

Use pictorial representations to continue to understand how unitising 10s supports multiplying by multiples of 10 .

Building tables

Recall through mental maths. Create fact families and establish links.

If I know $6 \times 5=30$
I know $5 \times 6=30$
Look for strategies and describe patterns in times tables.

Reinforce the mathematical vocabulary of product and factor.

Introduce missing number questions.
If I know that the product of $3 \times(a)$ is 12. How can I use this to find what a is worth?

Known related facts

Understand how to use known timestables to multiply multiples of 10 .
Understand commutative law and
problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

2 \quad| create fact families from these known |
| :--- |
| facts. |

National Curriculum
objectives

- recall and use multiplication and division
facts for the 3, 4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication

Build tables

Use concrete resources to divide into equal groups. Link this to knowledge of known times-tables to calculate divisions. Use language linked to division with counting stick.

18 counters divided into groups of $6-3$ groups of 6 counters. $18 \div 3=6$.

Known facts

Children use concrete resources, for example place value equipment to explore how to divide by unitising.

Build tables

Use pictorial resources to help create links with knowledge of known times-tables.

There are 9 groups of 4
Bar model representations to show dividing into equal groups. Reinforce that multiplication is commutative.

36								
4	4	4	4	4	4	4	4	4

36			
9	9	9	9

Known facts

Children use pictorial resources to help understand dividing by unitising. They divide multiples of 10 by unitising.

Build tables

Children write STEM sentences to show their understanding of how their times-tables knowledge helps them to calculate divisions.

I need to work out 36 cakes shared between 4.

I know that $4 \times 9=36$
so I know that $36 \div 4=9$.

Children understand how division is related to both repeated subtraction and repeated addition.

Known facts

Creating links for division through use of times tables, dividing multiples of 10 by a single digit. They can articulate their understanding
and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

If I know that 6 divided by $2=3$
I know that 6 tens divided by $2=3$ tens
$60 \div 2=30$

Division without remainders

Children use concrete apparatus, such as place value charts and counters or dienes to explore dividing 2-digit numbers by a one-digit number.

$48 \div 4=12$
through the use of STEM sentences, in particular that the answer is 10 times smaller.
$150 \div 3=$?

150 is 15 tens.
15 divided by 3 is 5 .
15 tens divided by 3 is 5 tens.
$15 \div 3=5$
$150 \div 3=50$
What is the same?
What is different?

Division without remainders

Children use pictorial representations
to explore dividing without remainders. They may use a partwhole model and partition into friendly numbers to complete the division.
$40 \div 4=10$
$8 \div 4=2$
$10+2=12$
$48 \div 4=$

Division without remainders

Children solve problems involving division and can articulate their answer through STEM sentences.

Sarah thinks that 55 sweets can be shared equally between 5 people. Is she correct? Convince me.

I have partitioned \qquad into \qquad
tens and \qquad ones.

Dividing with remainders.

Children use concrete equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further and there are objects left over.

There are 10 counters in total.
There are 3 groups of 3 , with 1 remainder. Start with smaller numbers to understand the concept and then begin to explore larger numbers.
$94 \div 4=$

Dividing with remainders

Use pictorial representations to explain remainders.

-
 --
 - 900000 - 0

There are 23 cars to share between 5 children.
$23 \div 5=4$ remainder 3

Dividing with remainders

Understand that the remainder is what cannot be shared equally from a set. Children use STEM sentences to show their deeper knowledge with the use of times table knowledge to find how many groups the amount can be shared into.
$23 \div 5=?$
$3 \times 5=15$
$4 \times 5=20$
$5 \times 5=25 \ldots$ this is larger than 22
So, $22 \div 5=4$ remainder 3

Year 4 - Multiplication \& Division

Multiplication

National curriculum

- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; dividing by 1 ; multiplying together 3 numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply twodigit and

Concrete
Building tables

Pictorial

Building tables

Represent the relationship between different tables through pictorial representations e.g. see the relationship between 9 and 10 times table.

Or the relationship between 10-, 11- and 12times tables

Create links between other times tables using pictorial representations.

Using known facts

Use pictorial representations and unitising to show known facts.
If $3 \times 5=15$ then $3 \times 500=1500$ and
$1,500 \div 3=500$

Abstract

Building tables

Understand patterns between times tables. Be able to articulate the links between the $\times 3$ table, $\times 6$ table and $\times 9$ table

Use techniques to help learn patterns with more difficult tables.
$\times 5$ table and $\times 7$ table
$4 \times 7=4 \times 5+4 \times 2$
$\times 9$ table and $\times 10$ table
$7 \times 10=70$
$7 \times 9=70-7=63$

X 12 table
$4 \times 12=4 \times 10+4 \times 2$

Use these links to help solve problems.

Using known facts

Using known facts to simplify some multiplications. Children look for friendlier numbers to work with when multiplying.
three-digit numbers by a one-digit number using formal written layout

- solve problems involving multiplying and adding, including using the distributive law to multiply twodigit numbers by 1 digit, integer scaling problems and harder
correspondenc e problems such as n objects are connected to m objects

(100) (100) (100) (100) (100) (100) (100)
 (100) (100) (100) 100 (100)

Distributive property of

multiplication

Ensure children explore the distributive law. Use counters and concrete apparatus to create equations to show distributive law.

Distributive property of multiplication

Use pictorial representations to explore understanding of distributive law.

Write two multiplication equations to show the diagram.
$3 \times 5=15$ and $5 \times 3=15$.
What is the same and what is different?
Both equations have factors of 3 and 5 .
Both equations have product of 15
As they become more secure in understanding show them how it can be distributed across and still has the same answer.

```
\(24 \times 5=12 \times 2 \times 5\)
\(12 \times 2 \times 5=\)
    L,
    \(12 \times 10=120\)
So, \(24 \times 5=120\)
```


Distributive property of

``` multiplication
```

Pupils should be able to represent such relationships using mixed operation equations, for example:
$5 \times 6=4 \times 6+6 \quad$ or $\quad 5 \times 6=4 \times 6+1 \times 6$
$4 \times 6=5 \times 6-6$ or $4 \times 6=5 \times 6-1 \times 6$

Use an array to write multiplication sentences and reinforce repeated addition.

-000

$2+2+2+2=8$
$4+4=8$
$2 \times 4=8$
$4 \times 2=8$

Children balance equations to find missing equations
$4 \times 5=2 \times 5+$ \qquad $x 5$

$\begin{aligned} & 5 \times 3 \times 2=(5 \times 3) \times 2=15 \times 2=30 \\ & \text { or } \\ & 5 \times 3 \times 2=5 \times(3 \times 2)=5 \times 6=30 \end{aligned}$		
Partitioning Make multiplications by partitioning into friendly numbers, use concrete apparatus to support.	Partitioning Use pictorial representations to understand how multiplication can be completed through partitioning into numbers that are easier to work with.	Partitioning Partition numbers to multiply with friendly numbers. $\begin{aligned} & 14 \times 6= \\ & 10 \times 6+4 \times 6= \\ & 60+24=84 \\ & 14 \times 6=84 \end{aligned}$ Solve missing number equations.
Short multiplication Use place value equipment to make multiplications. Make 6×212 using equipment There are 6×2 ones $=12$ ones There are 6×6 tens $=36$ tens There are 6×2 hundreds $=12$ hundreds $1,200+360+12=1,572$	Short multiplication - Grid method (If needed for conceptual understanding) Use grid method or place value counters alongside a column method. Start with two digits $\times 1$ digit and progress up to 3 digits x 1. $352 \times 5=$ Short multiplication	Short multiplication Expanded (Begin with 2-digit number by a onedigit number and progress into 3 digits x 1 digit) Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation. $\begin{array}{r} 36 \times 44 \\ 36 \\ \times \quad 4 \\ \hline 24(4 \times 6) \\ +\quad 120 \\ \hline 144 \\ \hline \end{array}$

			Into formal method -once children are secure with exchanges and how they are related to place value at each stage of the calculation. $\begin{array}{r} 36 \\ \times \quad 4 \\ \hline 144 \\ \hline \end{array}$
	Multiplying by 10 and 100 and multiples of 10 and 100 Children use unitising with concrete apparatus to create links between multiplying by 10 and 100. I can see 2 groups of 2 ones $=4$ I can see 2 groups of 2 tens $=40$ I can see 2 groups of 2 hundreds $=400$	Multiplying by 10 and 100 and multiples of 10 and 100 Children use pictorial representations with unitising to create links by multiplying by 10 and 100. Children understand that when using a place value chart to multiply multiples of 10 and 100 that the amount becomes 10 times or 100 bigger. $\begin{aligned} & 4 \times 10=40 \\ & 40 \times 10=400 \\ & 4 \times 100=400 \end{aligned}$ Once confident children can look at multiplying look at real life problems that	Multiplying by 10 and 100 and multiples of 10 and 100 Children find missing numbers and create links. \qquad $x 10=500$ $5 \times \ldots=5,000$ Children solve worded problems. Eggs come in boxes of thirty. A supermarket orders eighty boxes of eggs in one week. How many eggs does the farmer need to supply? 80 boxes of 30 eggs: $\begin{aligned} 30 \times 80 & =3 \times 8 \times 10 \times 10 \\ & =3 \times 8 \times 100 \\ & =2.400 \end{aligned}$

Year 4 - Division

- Recall multiplication and division facts for multiplication tables up to 12 $\times 12$
- Use place value, known and derived facts to divide mentally
- Divide two-digit and three-digit numbers by a one-digit number using formal written layout (not explicitly stated in the programme of study but implied in the non-statutory guidance)

Children will be familiar with 3×4 or $4 \times 3=$ 12. Looking at the array differently reveals the inverse, that is $12 \div 3=4$ or 12 put into 3 rows makes 4 columns - or 4 in each row.

Use known facts

Create pictorial representations for known facts. Use unitising to support working with bigger numbers.

Abstract
 Link to tables

Explore patterns through understand families of related multiplication and division facts.
I know that $5 \times 4=20$, so I
know all these facts:
$5 \times 4=20$
$4 \times 5=20$
$20=4 \times 5$
$20=5 \times 4$
$20 \div 5=4$
$20 \div 4=5$
$5=20 \div 4$
$4=20 \div 5$
Find missing number facts using what I know.

Use known facts

Pupils must also be able to apply their automatic recall of multiplication table facts to solve division problems, for example, solving $28 \div 7=4$, by recalling that $4 \times 7=28$ Understanding that $280 \div 7=$ 40. They use this to help with division of 10s and 100s by a single digit.

		Represent how to partition flexibly where needed to create more effective calculations.	
	Dividing with remainders Use concrete materials and place value equipment to explore remainders. Show remainder as how many are left that cannot be shared by the divisor.$47 \div 4=$Tens Ones 10 1 1	Dividing with remainders Represent through arrays, showing the remainder as the part that cannot be shared equally or through pictorial representation on a place value chart. Children use pictorial representations to help dividing with remainders. 34 biscuits, on plates of 6 . How many full plates?	Dividing with remainders Understand how partitioning can help with remainders. Children use their times table knowledge to partition into friendly $90 \div 4$ $\begin{array}{r} 80 \div 4=20 \\ 10 \div 4=2 \\ 90 \div 4=22 r 2 \end{array}$

Year 5 - Multiplication

National curriculum	Concrete	Pictorial	Abstract
- identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers - know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply numbers up to 4 digits by	Building tables and create links to inverse Continue to ensure children are exposed to times tables for multiplication facts for multiplication tables up to 12×12. Use times table knowledge to apply to multiples of 10,100 and 1,000 using counting stick- forwards and backwards and with missing jumps. Use concrete equipment where needed to group and share and to explore the calculations that are present. Understand unitising to understand multiplying in multiples of 10,100 and 1,000 . I have 21 counters. I made 7 groups of 3 . There are 21 in total. I have 21 in total. I shared them equally into 7 groups. There are 3 in each group. I have 21 in total. I made groups of 3 . There are 7 equal groups. $3 \times 7=21$. If I know $3 \times 7=21$ I know that $30 \times 70=2,100$	Building tables and create links to inverse Use pictorial representation to embed multiplicative relationships and explore fact families to understand division facts. $\begin{aligned} & 4 \times 12=48 \\ & 12 \times 4=48 \\ & 48 \div 4=12 \\ & 48 \div 12=4 \end{aligned}$ Use pictorial resources to help explore these fact families.	Building tables and create links to inverse Understand missing number problems for multiplication calculations and know how to solve them using inverse operations. $\begin{aligned} & 2 \times ?=22 \\ & ? \times 2=22 \end{aligned}$ Children use their knowledge of links between times tables to create relationships between if they double one number then they must half the other to obtain the same product. Alternatively, if they multiply one factor then they must divide the other factor by the same for the product to stay the same. Create STEM sentences to show their knowledge. I know that if I multiply one factor by 2 then I must divide the other factor by 2 for the product to stay the same.

a one- or twodigit number using a formal written method, including long multiplication for two-digit numbers

- multiply and divide numbers mentally, drawing upon known facts
- divide numbers up to 4 digits by one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and

Explore links between times tables using pictorial representation, for example the effect of halving one factor and doubling the other. If children half one factor and double another, the product will stay the same.

Understanding factors,

Children use concrete resources, such as counters, multilink and cubes to understand the meaning of square and cube numbers.

Children should understand that a square number is the result of a number multiplied by itself. For example, 4 rows of $4=16$, 16 is a square number.

They explore cube numbers using cubes and multilink.
27 is a cube number $3 \times 3 \times 3$

Understanding factors

Use images to explore examples and nonexamples of square numbers.
$6 \times 6=36$
$6^{2}=36$

Children look for patterns when finding square numbers.

Understanding factors

Use multiplication tables to look for patterns in finding common multiples, common factors, square, prime numbers, and cubed numbers. Can children spot a pattern? Children can identify which are prime and composite numbers and explain how they know.

Children complete STEM sentences to show their knowledge.

I know that the cube of a number is the result of multiplying the number by \qquad and then \qquad again.
those
involving decimals by 10, 100 and 1,000

- recognise and use square numbers and cube numbers, and the notation for squared
${ }^{(2)}$ and cubed
(3)
- solve problems involving multiplication and division, including using their knowledge of factors and multiples, squares, and cubes
- solve problems involving addition, subtraction, multiplication and division

Use counters to create arrays to explore factors of a number e.g., factors of 18. Use the counters to find all the factors.
2×9
000000000
000000000
9×2
-00000000
-0000000

Explore using concrete apparatus the rules with factors for numbers (they always have pairs except for when they are a prime number). Ensure children become confident in finding all factor pairs, understanding how to work in a systematic way.

Multiplying by multiples of 10, 100

and 1,000

Use place value equipment to explore multiplying by unitising, allowing children to move from additive to multiplicative thinking.

Use place value charts and counters to show how when you multiply by 10 it becomes ten times the size.

X	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

They understand that if a number cannot multiply a whole number by itself to create it then it is not a square number.

Use pictorial representations to find factor pairs.

Multiplying by multiples of 10,100 and

1,000

Use pictorial resources such as place value charts to explore how to multiply by multiples of 10,100 and 1,000 .

I know that \qquad is a multiple of
\qquad so it is a factor of \qquad -.

Multiplying by multiples of

 10,100 and 1,000Explore efficient methods and see patterns with using known facts and unitising to multiply. Explore how can find out what you don't know using these known facts.
Solve problems using these methods.

If I know $3 \times 6=30$
Then I know $3 \times 60=300$
I also know $3 \times 600=4,000$

and a combination of these, including understanding the meaning of the equals sign - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	$\begin{aligned} & 2 \times 1=2 \text { ones }=2 \\ & 2 \times 10=2 \text { tens }=20 \\ & 2 \times 100=2 \text { hundreds } 200 \\ & 2 \times 1,000=2 \text { thousands }=2,000 \end{aligned}$	Including understanding the effect of repeated multiplication by 10. Children see the relationship between multiplying by 100 and multiplying a number by 10 and then 10 again. Use pictorial representations to help develop understanding of conceptual scenarios. There were 2 people in the cinema this morning. This afternoon there are 100 more people, how many people are there this afternoon? $2 \times 100=200$ Two hundred is one hundred times as many as two people. There are two hundred people in the cinema this evening.	Children write STEM sentences to show their understanding. To multiply by 100, I can multiply by 10 and 10 again. To multiply by 1,000 I can multiply by $10 \times 10 \times 10$. Children use their understanding of multiplying by 10,100 and 1,000 and using the inverse to help them find missing numbers. \qquad $x 1,000=15,000$
	Known facts Use concrete apparatus and unitising to use known facts to find other facts. I know that $3 \times 3=9$	Known facts Use place value equipment and knowledge of unitising to represent what I know to find what I don't know.	Known facts Make links using known facts and unitising to multiply. $\begin{aligned} & 5 \times 5=25 \\ & 5 \times 50=250 \end{aligned}$

	$\begin{aligned} & 30 \times 3=90 \\ & 300 \times 3=900 \end{aligned}$ \square \square \square	$\begin{aligned} & 2 \times 4=8 \\ & 2 \times 40=80 \\ & 2 \times 400=800 \end{aligned}$	$\begin{aligned} & 5 \times 500=2,500 \\ & 5 \times 5,000=25,000 \end{aligned}$ Understand all the relative facts through working systematically. $5,000 \times 5=25,000$ Find missing numbers using known facts and the inverse. 5 x \qquad $=2,500$
	Short multiplication - multiplying up to 4 digit numbers by a single digit Use concrete resources to explore how to multiply efficiently exploring partitioning to work with friendlier numbers.	Short multiplication - multiplying up to 4-digit numbers by a single digit Use pictorial representations to show partitioning numbers to multiply efficiently. Partition into relevant place value amounts. Use an area model or place value chart and then and then add the parts.	Short multiplication multiplying up to 4-digit numbers by a single digit If needed use expanded column multiplication initially. Once secure move into compact column multiplication, ensuring to include any required exchanges.

Place value counters with an area model chart or place value chart would be a good way to explore with concrete apparatus.
$36 \times 4=144$
$30 \times 4=120$
$4 \times 6=24$

Long multiplication - multiplying up

to 4 digits by 2 numbers

Partition one number into place value amounts thinking about working with friendlier numbers e.g., 10 s and 1 s and then add the parts. Use the grid method to break it down. Start with 2 digits by 2 digits and work way up to 4 digits by 2 digits. Use place value charts to support.

```
14\times13=182
```

$10 \times 10=100$
$4 \times 10=40$
$3 \times 10=30$
$3 \times 4=12$

100
30
6
6 \qquad
$100 \times 6=600 \quad 30 \times 6=180 \quad 6 \times 6=36$

Long multiplication - multiplying up to

4 digits by 2 numbers

Use grid method to break down when introducing multiplying 2 digits by 2 digits. Then add the parts together.

2

100	20	5
1,000	200	50
200	40	10

$$
125 \times 12=1,500
$$

$$
\begin{aligned}
& 367 \\
& 4 \\
& \begin{array}{r}
\hline 1,468 \\
\hline 22
\end{array} \\
& =2 \text { tens }+8 \text { ones } \\
& =2 \text { hundreds }+4 \text { tens } \\
& \text { plus } 2 \text { more tens }=2 \text { hundreds }+6 \text { tens } \\
& =1 \text { thousand }+4 \text { hundreds }
\end{aligned}
$$

\times
4×7 ones $=28$ ones
4×6 tens $\quad=24$ tens
4×3 hundreds $=12$ hundreds
hundreds

Long multiplication

Multiplying up to 4 digits by

2 numbers

Use column multiplication, children will need to be secure in their understanding of 0 as a place holder. Begin with expanded form ensuring understanding of place value at each stage.

		2	1	9	0
x				6	9
	$\mathbf{1}$	$\mathbf{9}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Use an area model with concrete apparatus to explore this method.

Multiplying decimals by 10,100 and

1,000

Use place value charts and counters for children to move counters along the number of places needed to the left. Use counters to model the exchange of 10 tenths, 10 hundredths or 10 thousandths. Ensure misconceptions are addressed with adding zero and children understand how much each one is increasing by e.g. $\times 10-$ it is ten times bigger.

Show children expanded column method, starting with 2 digits by 2 digit and working way up to 4 digits by 2 digits.

Multiplying decimals by 10,100 and

1,000

Use pictorial representation on a place value chart to help represent multiplication by 10,100 or 1000

Hundreds	Tens	Ones	Tenths	Hundredths	Thousondths
		$\mathbf{0}$	$\mathbf{3}$	$\mathbf{7}$	

$0.37 \times 10=3.7$

Progress to include examples that require multiple exchanges as understanding, confidence, and fluency build.

Multiplying decimals by

 10,100 and 1,000Use STEM sentences to articulate understanding, see patterns between the multiplication and understand that to multiply by 100 you could multiply by 10 and then 10 again.
$0.37 \times 10=3.7$
$0.37 \times 100=37$
$0.37 \times 1,000=370$

Th	H	T	O	.	Tth	Hths
			0	.	3	7
			3	.	7	
		3	7	.	0	
	3	7	0	.	0	

Once secure solve problems involving these.

Year 5 - Division			
National curriculum	Concrete	Pictorial	Abstract
	Building tables Apply tables knowledge to multiples of 10,100 and 1000 using counting stick- forwards and backwards and with missing jumps. Create links for inverse with tables.	Building tables Create links of multiplicative relationships and explore fact families to understand division facts. $\begin{aligned} & 4 \times 12=48 \\ & 12 \times 4=48 \\ & 48 \div 4=12 \\ & 48 \div 12=4 \end{aligned}$	Building tables Children use understanding of known facts to help with tables I know that $7 \times 7=49$ So, I know that $49 \div 7=7$ I know that $70 \times 7=490$ So, I know that $490 \div 7=70$ Create fact families of known facts. Use inverse operation to find missing numbers $\begin{aligned} & 16 \div 2= \\ & 16 \div \overline{=}=8 \\ & -\times 2=16 \\ & -2=16 \end{aligned}$ Understand missing number problems for division calculations and know how to solve them using inverse operations.
	Understanding factors Use concrete apparatus, such as counters to explore factors through creating arrays. Work systematically to find them all and understand that if there is a remainder it is not a factor of the given number.	Understanding factors Use factor diagrams to find factors. Establish common factors amongst number and work systematically to find all the factors.	Understanding factors Understand and explain through STEM sentences how to recognise prime and composite numbers. Understand that prime numbers are numbers with exactly two

	$\begin{aligned} & 2 \times 4 \text { or } 4 \times 2 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \end{aligned}$ 2 and 4 are factors of 8 because they divide 8 equally with no remainders. 5 is not a factor of 8 because 5 does not divide equally into 8 .		factors, therefore 1 is not a prime number as it only has 1 factor. $\begin{aligned} & 17 \div 1=17 \\ & 17 \div 2=8 r 1 \\ & 17 \div 3=5 r 2 \\ & 17 \end{aligned}$ 1 and 17 are the only factors of 17. 17 is a prime number. Understand that a composite number is a number with more than 2 factors. Composite numbers are not prime numbers.

Known facts

Use place value equipment and counters to support unitising for division by 10,100 or 1,000 . Use known facts, place value and knowledge of inverse to divide mentally.

I know that $3 \times 1,000=3,000$
So, $3,000 \div 1,000=3$

Known facts

Use a place value chart to support dividing by 10,100 and 1,000 .

milom	timitas	${ }_{\text {remen }}^{\text {remad }}$	Tomast	nimatat	rom	ora	remit	Musatatas
			2	4	0	0		

$2,400 \div 10=240$

Represent related facts with place value equipment when dividing by unitising.

210 is 21 tens.

21 tens divided into groups of 3 tens. There are 7 groups.
$210 \div 30=7$

Known facts

Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check.
$6,000 \div 5=1,200$
$6,000 \div 50=120$
$6,000 \div 500=12$
Use the inverse to check
$5 \times 1,200=6,000$
$50 \times 120=6,000$
$500 \times 12=6,000$
Use STEM sentences to articulate understanding of why digits change when dividing by 10, 100 and 1,000

Use this knowledge to solve problems with known facts.

	Short Division Use place value resources to explore grouping for division.	Short Divisi Use pictorial charts and coun Ensure childre number and to holder. Disc are in each co $8,408 \div 4$ Model the sho the pictorial r the connection. Once children to work with methods to b	ces, such as place value to explore short division. w to start with the largest 0 if necessary, as a place ow many groups can there vision calculation alongside ce so children start to see secure in the method begin nges, using pictorial	Short Division Complete the short division for up to 4-digit numbers divided by a single digit.
	Short Division with remainders Use concrete apparatus to understand remainders. Use multilink or concrete apparatus to group showing remainders.	Short Divi Once childr in division Use pictoria value charts remainders they unders smaller than	h remainders fident with exchanging introducing remainders ntations, such as place are to understand temaining 1s ensuring remainder must be isor.	Short Division with remainders Children move onto problem solving contextual situations. I have 70 eggs, how many boxes will I need to buy? Each egg box can hold 6 eggs.
	Division with decimals	Division wit	cimals	Division with decimals

	Use place value charts and concrete apparatus to divide decimals. Understand division by 10, 100 and 1,000 using exchange and understanding which way the counters will move on a place value grid as the value becomes smaller.	Use pictorial representations to represent division showing exchange on a place value grid.	Understand the movement of place value counters on place value grid, when dividing by 10 decimals become ten times smaller. Use place value grid to show. involving decimals. When dividing by 10, 100 or 1,000 understand the movement on a place value grid.
When dividing other amount that appear in real live context e.g., money ensure children understand the importance of the decimal.			
$£ 32.80$ divided by 8 people - how			
much does each person receive?			

Year 6 - Multiplication

National curriculum	Concrete	Pictorial	Abstract
- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication - divide numbers up to 4 digits by a two-digit whole	Build tables Use counting stick activities to ensure children remain fluent in times tables, the 36 multiplication facts that are required for formal written multiplication are as follows. Children should leave year 6 knowledge of all times tables up to 12×12. Use equipment to secure understanding of square numbers and cube numbers. Use facts that know to find other facts.	Build tables Children create fact families from known facts - use pictorial representations with unitising. If I know $3 \times 2-\mathrm{I}$ know 30×2 or 3,000 x 2. Understand through pictorial representations that there are multiple approaches to solving a problem. E.g., They may choose to multiply by a number by 14 through multiply by 4 and then by 10. Or multiply by 7 and then 2 .	Build tables Children solve word problems using their times table knowledge. They use known facts to generate families of related facts. They can explain confidently which method they prefer, and which is most efficient.
number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate	Multiplying by multiples of 10, 100 and 1,000 Use concrete apparatus, such as place value grid and counters to represent up to 7-digit numbers on a place value grid. Use place value charts and concrete apparatus to support multiplying by any of the powers of 10, including when working with decimals.	Multiplying by multiples of 10, 100 and 1,000 Use pictorial representations to explore multiplying by multiples, including with decimals. Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations. Derive facts from unitising and using their understanding of powers of 10 . If I know :-	Multiplying by multiples of 10,100 and 1,000 Use efficient methods to solve word problems. Discuss various methods and confidently explain why have chosen certain method. Use what know to find missing numbers. \qquad $x 90,000=9$ million

for the
context

- divide
numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with

Order of operations

Use equipment to model different interpretations of a calculation with more than one operation. Explore different results

$$
3 \times 5-2=?
$$


```
4 x 2 = 8
40\times20=800
400 x 200=80,000
4000 x 2000=8,000,000
```


Order of operations

Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.

Can be written as $12 \times 4+12 \times 6$
$48+72$

Order of operations

Understand the correct order of operations in calculations without brackets.

Understand how brackets affect the order of operations in a calculation. Solve calculations involving varying operations.

mixed operations and large numbers - identify common factors, common multiples and prime numbers - use their knowledge of the order of operations to carry out calculations involving the 4 operations		Multiplying up to 4 digits by 2 digits Use an area model to break down multiplication and add each part together.				
			3,000	100	20	6
		40	120,000	4,000	800	240
		7	21,000	700	140	42
		Model written multiplication alongside the area multiplication. Move into long column multiplication when ready.				

Multiplying up to 4 digits by

 2 digitsWhen children are reading move into compact column
multiplication. Ensure children are secure with place value and have a secure understanding of zero as a place holder.

Move into finding missing number using inverse.

Solve problems involving multiplication.

Year 6 - Division							
National curriculum	Concrete	Pictorial					Abstract
	Build tables Use concrete resources to link table/ division knowledge with factors and multiples. For example, 4 is a factor of 16 but not of 19. This helps with their division recall with remainders.	Use pictorial resources to link table/ division knowledge with factors and multiples. Understand the importance of knowing when a number is a composite number in division questions. Use area models to link multiplication and division. $6 \times ?=144$					Build tables Use knowledge to find missing numbers. Link fact families and known facts to help solve problems with division.
	Dividing by single division Use equipment to create arrays to show how dividing with single division. If children cannot split into equal groups array will show remainder. $24 \div 6=4$	Div Use valu exch rema divis repres	by ial r to on if n	le d enta div valu d. the p	, su M hart the ial	ch as a place odel and show short	Dividing by single division Use short division to solve problems. A factory makes 98 cakes, they are to be packed in boxes of 7 . How many boxes of cakes will they produce?

