I know that I can recognise numerals 1 to 5 .

I know that counting can go forward or backwards.

I know that I can recognise

 numbers 1-5I know that I can say numbers 1 5.

I know that I can recognise sets of 1, 2 and 3.

I know that dots can be arranged in different ways to represent the same number.

I know that one number can be made from (composed from) two or more smaller numbers.

I know how to count to five objects by saying one number name for each item.

I know how to identify numbers 1 - 5 .

I know how to recognise the number of objects in a group (within 5) without counting.

I know how to identify the number that comes before and after 1-3

I know how to use the language of 'more' and 'fewer' to compare two sets of objects.

I know how to say the number that is one more than a 1-3

I know how to use objects and pictorial representations to help me.

I know how to compare two small groups of up to five objects.

I know how to explore all the ways that five can look.
know when counting forwards each number is one more than the number before.

I know when counting backwards each number is one less than the number before.

I know when comparing two small groups how to identify how many are in each group.

I know when counting how to link the number symbol with its cardinal value.
Zero, ones, tens \quad • Ther are
\qquad altogether. number one, two, three, four, five none how many ...? count, count (up) to, count on (from, to),
count back (from, to) count in ones, twos.

- There are altogether \qquad
\qquad one more than - I can subitise \qquad objects in
- This set has \qquad
- There are more/less objects in this group.
- I know that the next number is

I know that I can recognise some numerals of personal significance.

I know that counting can go forward or backwards in order.

I know that I can recognise and can name 0 and its significance.

I know that I can recognise counting patterns from 1 to 100 .

I know that I can say, read and write numbers to 100 in numerals correctly.

I know that I can say, read and write number to 20 in numerals and words.

I know that I can count to 100 in $1 \mathrm{~s}, 2 \mathrm{~s}, 10 \mathrm{~s}$ and 5 s .

I know that I can recognise the patterns of counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s.

I know that some small quantities do not need counting.

I know how to identify the number that comes before and after 1-10.

I know how to use the language of 'more' and 'fewer' to compare two sets of objects.

I know how to recognise patterns of counting in $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s ,

I know how to compare numbers up to 20 .

I know how to say the number that is one more than a given number.

I know how to count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

I know how to use objects and pictorial representations to help me.
know when to reason about the location of numbers to 20 within the linear number system, including comparing using $\leq \geq$ and $=$.

I know when counting forwards the numbers will get greater.

I know when counting backwards the numbers will get smaller.

I know when counting in multiples of 2 my answer will always end in $2,4,6,8$ or 0 .

I know when counting in multiples of 5 , my answer will always end in 5 or 0

I know when counting in multiples of 10, my answer will always end in 0 .

Numbers to 100; place value; digit, integer; symbol; compare; equal to, more, less, greater than, fewer, less than, greatest, smallest; first, second, third..last; ones, tens, partition, exchange; order, largest, smallest, number bonds, part, whole; plus; fact family, addition sentence, number sentence; how many more; number line; commutative; addition, more, make, sum, total, add together, altogether; calculation; Inverse equals, is the same as How many altogether? How many are there? groups, groups of, equal groups, unequal groups; row, column, array; number sentence; double, doubles; equal groups of 2 , equal groups of 5 , equal groups of 10 ; share, sharing, equally, odd, even, Whole, parts, equal parts, the same; split; groups; share; equally; quarter; four equal parts One half, two halves A quarter, two quarters

- This set of objects has been sorted by
- I could also sort the objects by
\qquad does belong in the set
\qquad
\qquad does not belong in the set because ...
- The last number I said was \qquad _ , so there are ___ objects in total. - I need to count objects from the group.
- There are \qquad objects left in the group.
- The numeral for \qquad is \qquad
- I can use a \qquad to represent each \qquad
- There are \qquad carrots. I am using 1 counter to represent each carrot I need \qquad counters.
- The number that comes after \qquad
is
-. - than \qquad is
\qquad is 1 more than
Create stories -
- First there were ...

Then ...
Now there are ...

- The number that comes before
\qquad
\qquad
- When counting backwards from the numbers I will say are
\qquad
- 1 less than \qquad is
is 1 less than \qquad

Declarative knowledge
I know that I can recognise the

I know that I can recognise numbers up to 100.

I know that I can read and write to at least 100 in numerals and words.

I know that counting can be done in varying step sizes.

I know that < means less than, > means greater than and $=$ means equals to.

I know that I can recall number bonds to and within 20 and to 100.

I know that I can describe the properties of two-digit numbers.

I know that I can represent numbers in different ways.

I know that I can recall the properties of place value.

Procedural knowledge
I know how to compare and order numbers from 0 to 100 , using greater than, less than and equals signs.

I know how to count in steps of 2 , 3 and 5 from 0, and in tens from any number forward and backward

I know how to recognise the place value of each digit in a 2-digit number (tens and ones)

I know how to partition and rearrange numbers to help me solve calculations.

I know how to identify, represent and estimate numbers using different representations.

I know that I can recall efficient methods using number sense, place value, bridging, near doubles and adjustment strategies.

Conditional knowledge	Vocabulary	Stem sentences
I know when I need to exchange. I know when to use the skill of estimation to help me with an equation.	units, ones tens, hundreds digit one-, two- or three-digit number 'teens' number place, place value	- There is 1 ten and \qquad ones. The number is \qquad - The number after \qquad is \qquad - The number before \qquad is \qquad \qquad in words is \qquad \qquad in numerals is \qquad

I know when comparing numbers, to use my place value knowledge to help me.

I know when to partition to help me solve a calculation.

I know when to use place value and number facts to solve problems.

I know when solving problems with place value how resources can help me.
stands for, represents exchange
the same number as, as many as equal to
Of two objects/amounts: greater, more, larger, bigger less, fewer, smaller
Of three or more objects/amounts: greatest, most, biggest, largest least, fewest, smallest one more, ten more one less, ten less
compare
order
size
first, second, third... tenth...
twentieth
twenty-first, twenty-second...
last, last but one
before, after
next
between, half-way between above, below
\qquad
\qquad
\qquad
-There are \qquad tens and
\qquad
ones. The number is \qquad 10 and -There are __ groups of 10 and _ more. There are \qquad in

total.

\qquad is made up of \qquad tens
and _ ones.
-___ is a part and \qquad - is a part The whole is \qquad tens. In words -There are \qquad , this is \qquad an be partitioned into \qquad and \qquad -
\qquad is equal to \qquad plus \qquad
-The start point is \qquad and the end point is \qquad . There are intervals on the number line. Each interval is worth \qquad The number line is counting up in \qquad

Declarative knowledge	Procedural knowledge	Conditional knowledge	Vocabulary	Stem sentences
I know that I understand the properties of three-digit numbers. I know that zero can be a place holder in three-digit numbers and understand its importance. I know that I can describe the standard form for writing numbers up to 1000 . I know that I can read and write numbers up to 1,000 in numerals and in words. I know that one hundred is equivalent to ten lots of ten. I know that ten is equivalent to ten lots of ones. I know that I can write numbers in words. I know that I can explain the relative position of numbers. I know that I can recall my number bonds to 20 and 100.	I know how to count from 0 in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number I know how to recognise the place value of each digit in a 3-digit number ($\mathrm{H}, \mathrm{T}, \mathrm{U}$) I know how to compare and order numbers up to 1,000 I know how to identify, represent, and estimate numbers using different representations	I know when comparing numbers, how to use place value to help me problem solve. I know when to partition numbers to help me solve calculations. I know when solving number problems and practical problems involving place value, which strategies to use and why. I know when solving number problems which resources will help me and why.	ones, tens, hundreds digit one-, two- or three-digit number 'teens' number place, place value stands for, represents exchange the same number as, as many as equal to Of two objects/amounts: greater, more, larger, bigger less, fewer, smaller Of three or more objects/amounts: greatest, most, biggest, largest least, fewest, smallest one more, ten more, one hundred more one less, ten less, one hundred less compare order size estimate first, second, third... tenth... twentieth twenty-first, twenty-second... last, last but one before, after next between, half-way between above, below ascending, descending	-There is \qquad tens and \qquad ones. -The number is \qquad -The \qquad represents . \qquad groups of ten. The \qquad represents \qquad extra ones. -There are \qquad tens in 100 and \qquad hundreds in \qquad . This means there are \qquad tens in \qquad \qquad tens and \qquad ones is the same as \qquad tens and \qquad ones. -There are \qquad hundreds, \qquad tens and \qquad ones. The number is \qquad is made up of ___ hundreds, \qquad tens and \qquad ones. \qquad is \qquad morel less than \qquad \qquad can be partitioned into \qquad \qquad and \qquad -When comparing numbers, I start with the \qquad place value column. -The start point is __ and the end point is \qquad There are \qquad interval on the number line. Each interval is worth \qquad

Declarative knowledge	Procedural knowledge	Conditional knowledge	Vocabulary	Stem sentences
I know that Roman numerals only have three of the same symbols in them and they are always next to each other. I know that because of the rule of order of Roman numerals, when the symbol is in front it is added to the amount, however when it is less than the symbol in front of it is subtracted. I know that I can recall symbols for Roman numerals up to $\mathrm{C}=100$ I know that zero is important in the concept of place value as it acts as a place holder. I know that there are ten 100s in a thousand. I know that 1,000 is ten times bigger than 100, 100 is ten times bigger than 10 and 10 is ten times bigger than 1. I know that I can explain the place value of numbers beyond 1,000, including counting in tens and hundreds. I know that I understand the rules of rounding.	I know how to count in multiples of $6,7,9,25$ and 1000 and how this can help me solve calculations. I know how to find 1000 more or less than a given number. I know how to compare and order numbers beyond 1000. I know how to count backwards through 0 using negative numbers. I know how to recognise the place value of each digit in a four-digit number ($\mathrm{Th}, \mathrm{H}, \mathrm{T}, \mathrm{U}$). I know how to recognise the place value of each digit to 2 decimal places. I know how to identify, represent, and estimate numbers using different representations I know how to compare and order decimal numbers with up to two decimal places	I know when partitioning a number, I can explore efficient methods to partition in different ways through creating friendly numbers. I know when rounding I need to look at the decider (the digit to the right) to determine if I need to round up or round down. I know when comparing numbers, I need to use my place value knowledge to help me. I know when solving number and practical problems which strategy to use and why. I know when solving number problems which resources will help me and why.	units, ones tens, hundreds, thousands ten thousand, hundred thousand, million digit, one-, two-, three- or fourdigit number numeral 'teens' number place, place value stands for, represents exchange the same number as, as many as equal to Of two objects/amounts: greater than, more than, larger than, bigger than, less than, fewer than, smaller than Of three or more objects/amounts: greatest, most, largest, biggest least, fewest, smallest one... ten... one hundred... one thousand more/less compare, order, size first... tenth... twentieth last, last but one before, after, next, between, half- way between, guess how many, estimate, nearly, roughly, close to, about the same as, approximate, approximately, just over, just under exact, exactly, too many, too few, enough, not enough round (up or down), nearest round to the nearest ten round to the nearest hundred integer, positive, negative above/below zero Roman numerals	-There are \qquad hundreds, \qquad tens and \qquad ones. The number is -When a number has no \qquad , then we use \qquad as a placeholder. - There are \qquad tens in 100 and \qquad hundred in \qquad . This means there are \qquad tens in \qquad \qquad thousands is equal to \qquad hundreds. \qquad rounded to the nearest 10 / $100 / 1,000$ is \qquad . -The letter \qquad represents the number \qquad \qquad more/ less than \qquad is \qquad -When comparing numbers, I know that I need to look at the digits in the \qquad column. -When comparing numbers, if the digits in the \qquad column are the same, then I need to look in the \qquad column. -The difference between the start point and the end point of the line is \qquad . There are \qquad intervals on the number line. Each interval is worth \qquad

Declarative knowledge	Procedural knowledge	Conditional knowledge	Vocabulary	Stem sentences
I know that zero is important in the concept of place value as it acts as a place holder. I know that there are ten 1,000 s in ten thousand. I know that 10,000 is ten times bigger than 1,000, 1,000 is ten times bigger than 100,100 is ten times bigger than 10 and 10 is ten times bigger than 1 . I know that I can read and write numbers with up to 7 digits using the comma separator. I know that I can describe linear number sequences. I know that I can interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers through 0 . I know how to recall Roman numerals up to $M=1,000$. I know I understand the rules of reading Roman numerals including years.	I know how to recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents I know how to round decimals using my place value knowledge and understanding of the high five rule to two decimal places to the nearest whole number and to one decimal place. I know how to read, write, order and compare numbers to at least $1,000,000$ and determine the value of each digit I know how to count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000 I know how to read Roman numerals to $1,000(\mathrm{M})$ and recognise years written in Roman numerals I know how to read, write, order and compare numbers with up to 3 decimal places using my place value knowledge. I know how to read and interpret negative numbers and find differences between negative and positive numbers.	I know when and why rounding any number up to $1,000,000$ to the nearest $10,100,1,000$, 10,000 and 100,000 can help me solve calculations. I know when solving problems involving numbers up to three d.p, which strategy to use and why. I know when comparing numbers, I need to use my place value knowledge. I know when solving number and practical problems which strategy to use and why.	units, ones tens, hundreds, thousands ten thousand, hundred thousand, million digit, one-, two-, three- or fourdigit number numeral, 'teens' number place, place value stands for, represents exchange, the same number as, as many as equal to, greater than, more than, larger than, bigger than q, less than, fewer than, smaller than \geq, greater than or equal to \leq, less than or equal to, greatest, most, largest, biggest, least, fewest, smallest one... ten... one hundred... one thousand more/less, compare, order, size, ascending/descending order, first... tenth... twentieth last, last but one, before, after, next, between, half-way between guess how many, estimate nearly, roughly, close to, about the same as, approximate, approximately, is approximately equal to, just over, just under exact, exactly, too many, too few, enough, not enough, round (up or down), nearest, round to the nearest ten/hundred round to the nearest thousand integer, positive, negative above/below zero, minus (temperature)	-The value of the \qquad in \qquad is worth \qquad -When a number has no \qquad then we use \qquad as a placeholder. -The column beforel after the \qquad column is the \qquad column. -Ten \qquad can be exchanged for \qquad rounded to the nearest $10 / 100 / 1,000$ is \qquad -The letter \qquad represents the number \qquad \qquad more/ less than \qquad is \qquad -The difference between the starting point and the end point of the line is \qquad There are \qquad intervals on the number line. Each interval is worth \qquad -If the digits in the \qquad column are the same. I know I need to look in the \qquad column when comparing.

Declarative knowledge	Procedural knowledge	Conditional knowledge	Vocabulary	Stem sentences
I know that I can read and write numbers with up to 8 digits using the comma separator. I know that I can use the whole number system, including saying, reading and writing numbers accurately. I know that there are ten 100,000 s in a million. I know that 1 million is ten times bigger that 100,000, 100,000 is ten times bigger than 10,000, 10,000 is ten times bigger than 1,000, 1,000 is ten times bigger than 100, 100 is ten times bigger than 10 and 10 is ten times bigger than 1.	I know how to read, write, order and compare numbers up to $10,000,000$ and determine the value of each digit I know how to round any whole number to a required degree of accuracy I can know how to use negative numbers in context, and calculate intervals across 0 I know how to calculate with negative and positive numbers. I know how to use efficient methods of applying my knowledge of properties of numbers to help me solve calculations.	I know when rounding to look at the digit to the right as my decider and use my place value knowledge to help me solve problems. I know when multiplying numbers by power of 10, I can use my place value knowledge to calculate the answer. I know when solving number and practical problems which strategies to use and why.	units, ones tens, hundreds, thousands ten thousand, hundred thousand, million, digit, one-, two-, three- or four-digit number, numeral, 'teens' number, place, place value stands for, represents exchange, the same number as, as many as, equal to, greater than, more than, larger than, bigger than q, less than, fewer than, smaller than, \geq, greater than or equal to, \leq, less than or equal to, greatest, most, largest, biggest least, fewest, smallest, one... ten... one hundred... one thousand more/less compare, order, size ascending/descending order first... tenth... twentieth last, last but one before, after next, between, half-way between guess how many, estimate nearly, roughly, close to, about the same as, approximate, approximately, is approximately equal to, just over, just under exact, exactly, too many, too few, enough, not enough, round (up or down), nearest, round to the nearest ten/hundred/thousand integer, positive, negative above/below zero, minus (temperature)	-The value of the \qquad in \qquad is worth \qquad -When a number has no \qquad then we use \qquad as a placeholder. -The column before/ after the \qquad column is the \qquad column. -The column one space to the left/right is \qquad time bigger/ smaller -Ten \qquad can be exchanged for \qquad rounded to the nearest 10/100/ 1,000 is \qquad -The letter \qquad represents the number \qquad \qquad more/ less than \qquad is \qquad \qquad is \qquad away from zero -If the digits in the \qquad column are the same, I need to look in the \qquad column.

